21,98 €
21,98 €
21.98
EUR
Tiempo de entrega
10 días
45,81 €
Esta combinación no existe.
Añadir a la cesta
¿Ha encontrado este artículo más barato en otro sitio?
Tapa de extracción cuadrada fija Ø80 21217 - 8010300212173
/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCAGQAUMDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6poooYhVJYgAckntQBDd3UVpEzzOBhSwXIy2OwHc1kr4ltT/y73f/AHwP8aytXuDc30p3ExqxVRuyB2yPrjNUxxTsQ5G03iV97BLElc8EyYJH0204eIpCP+PJR/22/wDsaxKUU7C5mbMmvyvE6pbCNyCFbzM7T2ONtZ51PVM/8fgH/bJf8KgFLjmiwczJxqeqZ/4/P/IS/wCFL/aWp/8AP5/5CX/Cq9OxTshczJLi8vriFoprnfG2MjYo9+wqiLZh1fvnpVo0lKwXZVNqx/5aY49KUWzf89f/AB2rVA9qLBzMfb3d/bwrFDdBUXoPLU+/pT/7S1P/AJ/P/IS/4VF3op2DmZJ/aOqdPtn/AJCX/Ck/tLVR/wAvYP8A2yX/AAplFKwczNK2124jgVZ4BNIM5fftzz6BakPiCT/nyH/f3/7Gsqj8KLD5maZ8RyD/AJcc/ST/AOxpp8SyD/lw/wDIp/8AiazsUEDuM0WDmZoJ4mbePMsWVM8lZMn8sCtCx1y1u7jyQJImI483CgnIGBz15rnioPaoLiPGHT5XByGHBB9aVhqR3lFZXhcynRITPK8sheTLOxYkeY2OT6DArVpFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQahxYXP/AFyb+RqeoNQ/48Ln/rk38jQBxOfXvQPTOSKTHXnjtx0pR29T3x1qzEX0oFFLQA4UvNIKUfnQAU4UneloATtRRQOaAClFJ3paAFpfpSClFABQKKMcUAHFGeaKMfhQAvaikPNHegA71HN9zpUneobptsTHpgE0MZ03hht2iwkf3pB+TtWpWH4KfzPDsLdcyz/+jnrcqDUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqpq00cNhN5jbd6lF4zkkHAq3WN4odRaRIT8xkyB7AHP8xQJ7HNADPUjkUo6nufTPSkGM++enXFOHU9Ae9WZB7ZzRQO+AM96WgBRThTRThQAvSl4pOKB9KAF/CkFHWl60AIKWjpSigApaTvQeKAFo/GkFL+FAAKKOlFAB3oFFGPwoAKpavII7GZs9Eb+VXsVh+K5hDpc5JHKsvXH8JpPYcdzlrL4karosBsLS3sHgidyrSo5Y7mLHOGHcntV6x+LWsSXkCTWenGNnUMEVwxGecHccH8DXmdy+64kPqxrS8IQrL4s0dZQHja8hDIwyCC4yCK5uZ3OuysfTmnXP2zT7W62bPPiWTbnO3cAcZ/GrFNjRIo1jjVURAFVVGAAOgAp1bmIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYHir/AJdf+B/0rfrnfE80bzQxK2XjzuGOmcYpoUtjD6A9uOSKUYC57Y60cjGB7Yz+tKBycjp0JqjITqMgde4pw44pDjeuSQew9aWgBR1p9NXrTvoaADuBxR268Ud+OtLQAnGetL9Oe1B4pPzoAX37UtJ36Uo6UAH0pe1AFFABS0n0pR+tACUvSjHFB4oAQdKUUUHmgANcf8Q5zFpaKOrOR+G01156GvPviZNiCBPVmP6D/GpnsXTXvHnTHLn6mtvwZ/yNmif9fsP/AKGKwq3fBf8AyNei8/8AL7D/AOhiubqdXQ+n6KKK6DAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuO1lxJqdwy9N23n1Ax/SuxritQ5vrkf9NG/maaJkV+RjGM98+lO7cYpB6UuPWqMxM4wD1NLRTgKABacOvegA0ooAAKOlKaSgA70UvagUAJTh16UgPPFOoATjvR0oBoBoAWikFLigA7UnelFHAoAQ0tIM0vegBshwpryn4l3Ja+EQJ+Rv5qK9UuDhK8W8czebrlx7OR+QArOpsaUtzBj5roPBX/I16Lj/n9h/wDQxXPL0xXReBlz4t0Xp/x9xf8AoQrBbnT0Pp2iiiugwCiiigAooooAKKKKACiiigAooooAKKKKACiiigBk0giheRslUUscdeK4q6kE1zLIoIV3LDPoTXV6xcLBYSbwx8wGMY9SDXIVSIkApaSlFMgUCnAfkKQCndqAAUoODQBS0AHvR0oooAXrSUUvagBfoKCKMUCgA+lFH1o4xQAgpaWkxQAnPpS4opaAEx60UA5paAKmpNstZG9FY/pXhHiGbztdveTgSE17T4nuPI0q5Y90YDj/AGTXg9xJ5uoXTnqXP86xqM3pLS49e1dv8JP+R70v/tr/AOinrh1zxmu4+En/ACPelf8AbX/0U9Zrc2ex9E0UUVuYBRRRQAUUVU1XUbXSbCW91CXyraLG99pbGSAOACepFAFuiuT/AOFi+Fv+gp/5Ly//ABNVrH4meGrmEvLcz2jBsbJoGJPv8m4Y/HPFLmXcfKztaK5/SvGeg6tfxWWn3/m3MmdieTIucAk8lQOgNdBTTuK1gooooAKKKKACiiigDG8TyAWsMfO5nz+AH/165ztW94q/5df+Bf0rCA4qkZy3ClFAFP44pkh2560UUtAAAMc0uKKWgBOaWgUYzQAvNJiloFACGlFFFABR3opaACiiigAoIoooAQGlNFB4FAHG/EaYxaSMEDLn8tprxqJt08zerE/rXqHxXuPLsIkBHzFx/wCO15ZY9DWFR6nRTXulxBmu4+EgA8d6X/21/wDRT1xKcdKna/uNKt2v7OTy7m1HnRPtB2svIODweR3rNbmnQ+t6K+VLP9ojxPEkMdxa6RMFUK0rQOHfA5Y4kAyevAA9hWzF8fNdkj3rZ6QR1/1Un/xyugxPpKivm/8A4Xzr+AfsWk8/9MpP/jlQ3nxz8RT2zxxRadbucYlihYsvPbc5HtyKAPXPHHxBtNC86z0/bc6kFBB4eJDvwyvhgQwAPH0rxnxB4m1TXzANXuvtHkbvL/domM4z90DPQVw7a4zE5K/gB/jVafUy4PzAevArKUZM0TijphKNvUfjSeevrXE3N3MQSsgJzjBArMbU7mJyd4H/AAEUvZsrnR6cJc45r0Tw38T9Wt9UjfXbhrvTyrB0jgjDg44K4285x1PQnvivnuy8TzJKPtBVkx/Coz/Ouu03UI7uINE6N16EGlZxC6kfXPh/VoNc0iDUbRZUgm3bVkADDDFTnBI6g960K+a/h94iXw74hivZvNa1KPHMsSqWZSMgDJH8QU9R0r6E8P6tBrukW+o2iypBNu2rKAGGGKnOCR1B71rGXMZyjY0KKKKokKKKKAMLxQMm1/4F/SsMVu+J/wDl2/4F/SsMZ4qkZS3AfSlAzR+FFMQU4CkFOoAKM0Yo6UAL9aD0oPNGPSgApaKDQAlL2pKXigAooozQAUUUdqAF7dabiloJ9KAAU2Q4UmnD9aZPxHQB478WrovdrF2STP8A44K4mw5Qmui+JsofWpB/01b9ABXPWA+QmuaW51xWhdTtUGvNt8Pagf8Apg38qsJz0qr4k48Najx/ywaktynsePtKcnmprS9eF8BgFJ54qgx5NJnNdRzM2ZNUkVsZGO3FINWbByRn6CskfNGQeq8ioiaLAbv9re/6Cj+1eOv6CsHNLmiwG8dT3Dk9/QUxr1H6n+VYoNO/HFFguXnl5OMY96sabqc9hOJYGXOCDkZrLAY9DTyCo5pOJSkeu6DqiahbiRGGckEcf416V8OvF19omoW1is0C6bcXC+csygKm4qGfdwQQo7nHtXzZ4d1T+zb4O2TGQQQMf57V6xYXCzwrIjDB9/eueScXoaxfMj7Borzf4N+IoLvSItD8mRbm1SSXfkFGQvn6g5fGMduvavSK1TurmbVmFFFFMRzOvTO980bNlI8bRjpkDNZ1XdbH/E0n/wCA/wDoIqlgVSMnuH40opAKcBTEFKOtJThQACijHNKKAExS9/Wij6UCDOOlJmlpKBi4oo/GigAFFH06UZ4oAOaO1L3NFAhPx70AkUUuKBiVXvn2W8jeik/pVisvxDN5Om3LZx+7bH/fJpMa3PBPG1wJvEd4B/DK364qpYHEeeuah1yQy6zdvnJMhqewH7oVzM60Xk5xVPxTx4Y1Hn/liauJVLxYceFtR7/uv6047ob2PFm60A0v8XSjFdRzMFOGB96JRzn1oxS4ymO9AiKilIp6oT0BpgMx2qVFJFPW3J61Y8sL0ApARIuKey5XmnhR6UuKAKbDacV3ngPVAbf7K5+ZSxHI6ZH+NcTcIOtSaPdtZ30UiMQNwBAOMjIqJxui4uzPoXwlr914e1aO9tG9ElTj95HuBK5IOM4HI5FfUFfH9pKHQMO9fQ/we1K+1PwvPJqNzLcvHdvHG8rbmC7EOCep5ZuvrjoBWUH0NJrqdzRRRWhmctrX/IUn/D/0EVSxV3Wh/wATOb/gP/oIqnVIye4ClpKUZpkhil7UYo/CgAxS0lLQAZxR1xSGloGFFFFABQOv60f40GgBOlLiij8aBBR0ooFAB1pelAAoIoASuZ8cz+VpDnONxI/8dNdNXEfEyby9FJzj7x/8dNKWxcN0eHXzb7+4bP8Ay0P860LD/Ur9KyS3mTSNnqxP61rWA/crXMzqLyDpVDxfx4T1Aj/nmP8A0IVfj4rP8ZH/AIpO/PT5F/8AQhTjuEtjxvHNGKVjTMmuo5haeg5GaYKkBwKYiURpjkCpAFA4AFMGAOWHNKGTHLCkMkBBHFLUasg/iH507zEx94UAL+NITjvUbOM9Rj60m9fWgB7jKnNUz8r8dRVouD34qrIRvNA0eq+ELxrvSY3ckvls5+tetfCvxOuh6/b2t295JbX7raxQxNlFmkdAHZSQBwCCRk14d8Pp/wDQmiLdHbv/ALtdhqLyx6dPPbSPFcQI00UkbFXR1BKspHIIPQiuZ6SNt0fYdFFFamZy2rkPqMzIQVO3kHOeBVTHFOl/1jdaTrVmLEHFLQKKAFooooAKQilFBoATtTvXjvSfSigA/lRQelHegAoo7UUCF4zSc4x3peKAKACgClxSDigB1IaWkNADT0rzb4vXAj0qFAfvbwR/wGvSG+6TXkXxjuMxwx5HyuQfxQVE9jSmvePK4zW3Yf6lT7ViRDn2rbsv9Qg9qwOkvJzWb4248IX/AG+VP/Q1rSjHIrL8dnHhG99wn/oa047hLY8dJ60zOOtOPSm/hXUcwuacDxzTKUUASSNwuD2qPcfpSsflphoAXJ7UuT6mmn+lHPvTAcGPrS7uaZj60AHtQBJu4600nJzRg5pCKQ0dV4EnK3zRE4BGcZ75UV6aqiaNo2GVcFSPrXknhB9msL05AH/jy163anDJ9a56m5rHY+mPhx4oPjPwZp2vmz+wm78z/R/N8zZskZPvYGc7c9O9FYP7PyeX8ItBUdvtH/pRJRWhBt6sqpqMyooC8cAY7CqlXNY/5CU34f8AoIqmKtGT3CilooEFFGaM0AApSBSZyaBxQAd6KD60HigQdaXvSUdqADNOApvWnDmgBMdqUUtFABRigUUwA00+9ONBpMBj/wCrP0rw74ty77pRn+Mf+gCvcZD+7bNeA/FFy19Hu6lun/AVrOpsa0tzi4c8Vt2QzEnXpWJCa3bL/Up9KxOgvRAcVi/EFgvha4XP3gvH/A1rbhrnviO2NAK/3v6MtOG4pbHk3em08im4rqMAxRS0goEB6ClxxRnil+tAxuKXFH4UvWgVhuDSgYPJp1NJH4UDFNIaUmmnrQBs+ExnV0/A/wDjwr1q24K+xrynwYudWJxkBP8A2Za9TgbjJ7Vz1NzWGx6z8H/Bw1f4daTfDxH4kshL537izvvLiTEzj5V2nGcZPuTRXS/s8sX+D2gMep+0f+lElFaEnRa5E6XzSMPlkxtPrgDNUK2fEf8Ay7/8C/pWLVIxluKKKKQd6YhfpRSUufYUAGKBSjmg0gDFH0pRS4piGd6UDNKRSgUAMxmlHTNOI4oxxQAd6MUtHamAUUhooAKCaXpRQAOv+jyE9sfyNfOHxGk8zUIc+p/ktfSEnFpJ9R/I18zeOH3aig9P8FrKobUjCh4xW7Zn9yn0rBhHPWt60yIk6dKxZ0F6E9M1yvxOJGm2oHfdn80rq4c5Fcb8VXAt9OGevmfzSnD4iZ7Hm560h6ig4ozXSYCZpeelHWkamAuaM0lJSAd1XpSYpAeaM0wFJ5oJNHXmjtQAneilPNA4oA6vwPADI8xPPK/+gmu5uZjBp1zKP4Y2P6Zrl/BMRXTQ5A+Z2/p/hXpHgvQ7nXvEek2ltZpeQxXUVxeRSFNv2YOBJuDHDDBwV5znoa5payNloj6vooorUzMXxJ/y7f8AAv6VjCt7xCgNvE5zkPtH4j/61YVUjOW4ZooopkhSU760lAhR9aXFIKcM0AJ/KlFLijvxTsAUUd6CaLAFLik+lHNFgCgD1pe9HagBveil70H3oAKQ06k70DFuOLCT/PY18veLyTqhH+furX1Be8aa5/z0NfLfis/8TeTPt/6CKyqm1IzoOordtf8AVpn0FYVv1A963rcfIn0FYmxfg7VwvxXbc+nKOwk/kld1AORXn/xSbN5aL/dD/qEqqe4p7HCYHem4yfanMQB700Z710mA4D8qa3WlNNJpAJmjqKQ0CmAvSjOaDSUAOozmkpaQwp8aF5FUdScCm44rX8O2BubtZGHyIc9e4IpN2Q0rne6VAtvarGgwoJx+dfSfwI0pIPDEmozWcK3M88iw3O1TI8ICAjcOQu9W4OORnHQ14BodjJqOqWVjAyLLczJChYkKCzADPtzX19o2l2ejabDYabD5NpDnZHuLYySx5JJ6k1jBXdy5bWLtFFFaEFTVYVmspNxI2AuMeoBrlwa7GVBLE8bZwwKnHvXJXCCK4ljXO1HKjPsapETGUZopMUyBaKKO9AB1NPFJSjpTELRjmiigA70Uo5ooATvSik70tMA70UUnU0AHSjigUtAwzRRiikAl9/yDJPx/ka+WfFX/ACFZPw/9BFfU97/yDZP89jXyx4pGNYlI746/7orKobUjPtfvqO+RXQQZCL9BWBaDMq59RXQ24G0fQVizcu2+MrnvXm/xObOrIo7Z/wDQUr0qAZxXl3xKb/ieyDjjH/oK1VPcmexx7cnFKM9qQDJzSniukwBiaZxSk0lABRRRQAUUUtACU5RShST0p6IS2FGaVxixRtNKEX7x6ZrvtAsRZ2oQ9cknnPesfw/pojUTOp8w5A68V3nhrRL3XdSh0/TYXllkcBiFZljUsF3vgHCgkZPasZyvojSKtqeufs8aJcC7vdd3xfZPLey2ZO/fmN84xjGPfOe1e41l+GNEtvDmh22lWTzSW9vu2tMQWO5ixyQAOrHtWpVRVkS3dhRRRTEFcle/8ftx/wBdG/nXW1y2pp5d/Ouc5bd+fP8AWmiJlbtRRRVEBR0oApSKYADTqbSigBwpaaPalzQIXFAo7UUDAiig0cZoEFFHXrR3oGJigcUtFMAoooHSkA+WPzLCYDsM/oa+WPFoxqz49v8A0EV9UhwtncA85XH6Gvl3xqu3VD7/APxK1lUNqRj2fMyj3FdBF90enSufsc+cv4V0MPQVgbl637V5P8RnLeJrheMAr/6Ater2/Ue9eRePfm8V33sy/wDoK1pS3IqbHO4pprW8MaX/AG74n0jSPO8j7feQ2nm7d2zzHC7sZGcZzjIr7K0r4C+ArbTLSC+0f7ZeRwok1z9puI/OcKAz7RJhcnJwOBmt72MrHw9VrTNOvdVvY7PS7O4vbuTOyC3iaSRsAk4VQScAE/QV+hHgzwP4d8Frdjw1p32IXZQzfv5JN+3O377HGNx6etdJS5gsfmvrGj6nol0ttrOnXun3DIJFiu4GicqSQGAYA4yCM+xqltPoa/STxFomn+ItHuNK1m3+02Fxt8yLeybtrBhypBHKg8GvmH4nfAXVdHa/1Xww8d9pitvSwijla5QNJgRooD7wqlcsWBwCcccnMFj57WNicBT+VTxW7FuhzW/q/hnxBo1sLnWNE1SwgZhGst1aSRKWOSFywAzgE49jVODPTBB65pNlJFaCyeQjt9a3dL0yOJg2GLcjJNJaICRXV6L4f1jU4DNpuk395ArFGkt7d5FDYBxkDrgjj3rOUmUkM0nT7i+uY7axt5rid87IoULu2Bk4A5PGT+FfS/wX8IW2i6BBqlzZXNvrdyskc32jcrInmcLsOMD5FbJGeeuOKd8M/hpa+F4ob3VBDc65HI7JPC8myNWXbtAJAbjJyV/ix2Br0WiMbasJSvogoooqyAooooAKw/EESLJFIq4d87jnrjGK3KxvEX/Lv/wL+lNEy2MailpKszFooFLigBKXFHSlHNABk0vagUYpiFxRRQKQwopaSgAoNLnFJQAd6KKKYBRRRQBHck+Ufevm3x8mzUEyOuf5LX0lccx8V88fElNuoR46ZP8A6CtY1TWlucxpy/vR+H8634ugrC04fvcdsf1rcjOAKwOgu2/avHfGz58Uaj/10x+gr2O25xXjPiKGa98X3ttaQyT3E120UcUalmkYtgKoHJJPAArSluRU2PWv2TfCv9reNJvEJvPJ/sPb+48rd5/nxzJ97I27cZ6HPtX1/XKfCjSE0L4a+GrBbWS0dLGJ5oZNwZJnXfLuDcg72bI7dMDGK6utWZhRRRSAKKKKACuV8V/D7wx4s1CO+8QaZ9ruo4hCr/aJY8ICSBhGA6sfzrqqKAPP1+DfgNemhf8Ak5P/APF16BRRQAUUUUAFFFFABRRRQAVmeIAPskZwMh8Z/A1p1Q1qJ5bP5Bna2489AAaaE9jnaKKXvVmQlKKKUCgAozQKXvTABS0UUAGKWigUhBRRRQAUlLRQMQCjFLS0xDaWiigYyYfuzXgXxTi236cYw2P/AB1a9/kGUNeGfF6IrcxnBH7wf+gCsqmxpS3OE00fvT9P61tRisbTP9Yf8962Y65zoLcJ2qT6An9Kf+zx4Ph8RfE/V9euZo/L0K78wW0kAkEzSecFbcT8pRlDA4PIHTGabBHLOjRW8byzOCqRopZmY8AADqSe1fRfw38Oaf4f8L2Js9Misb26t45b1vL2yySkFm8wn5iQzvgH7ucDA4rSmTM6qiiitDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACob3/jzn/wCubfyqaobz/jzn/wCubfyoA5UiilpcCtDESl6UnelxTAPelxRiigBaKKMUAApQKMCgZpCA0mKWimAi0tAooAKKKQ9aAClFGKWgBrfdNeOfGaLEdvJjq55/4CK9jP3TXmHxggD6XbtjO0uen+zUVNjSn8R5BpgO88dhWxH9aydNBDtWtEfwrlOk674a2f23xnpMW/ZtmE2cZzsBfH47cfjX0pXzt8I/+R80v/tr/wCinr6JrWGxE9woooqyAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbIgkjZG6MCDinUUAc1e2rW8zgBzHnhiOD3qvXVTRJNGUkAIPt09xWFe2LwM7IpMK4wxIz/nNWmZyjbUpY5pcUtBpkCUlOFGOaYCCnUmKWgBKMUtFABRRRQAUUUGgBpz6Uo5o5z0o9xQAtFFFACHpXAfFKLfohOOm//wBANd/XI/EGHzNGK/7RH/jpqZ7FQ+I8DsARI4544/WtOOqMS7L65X0kI/U1fjx+Vcp1nb/CP/kfNL/7a/8Aop6+iq+dPhGf+K+0v/tr/wCinr6LrSGxnPcKKKKskKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoIDAggEHgg0UUAULjTIpWZkYxsccADaPwrHlTy5XTOdrEZrp6jmhSZCsig8EA45H0qlIlxucziir17YNbrvRi6d88Y9PrVKqM2rCUUtFMQlFLRQAlFFLQAnejr0o6ijvQAlKKQ0tAAOlIOCeadSLzyaADrXP+L4RJpU49FY/+OmugNZ2uR+Zp9wuOsbf+g0nsOO584Srt1O8HpIf5mp46dqyeVrl8vpIajjPpXIzsR3Xwj/5H7Sv+2v/AKKevouvnP4Rf8j9pf8A21/9FPX0ZWkNjOe4UUUVZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFU72xSdcxhVk656A/WrlFAmrnN3EDwSbJBg9Rg9RUddRWXeacSd9vySSSpOPyq1Ihx7GUaMU51KsysMMDgikpkCEUtFFACd6KWigBuaMccUppuCDwaYDsd6E5WjPY8GhegxQAGqmo/NAw9QR+lXAKhugDHQwR89eLITH4jvjxhpTWanGK6H4hL5euSnGAZW/pXORnPSuSW52R2PTvgjpM154ibUUaMRWH3wSdx3pIoxx7eor3mvIP2fOmvf8Abv8A+1K9frSOxEtwoooqiQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCG5to7hQJM5HQg9KzJtNmUkx4YZ4GecVs0U07CcUzmB1oxXQXNpFcHMgO7GAQelZb6dcKQAob3U/wCNUpGbi0UxRRijtTJEIpNvHFOo60wGMKTlSPSpOKaVx0oAXoajn5Sn0yTlDQBUl8B6B4g08zanZu11Jv8A3yTOrKckBgM7cgAdQRxyDXjvxA8FXXhO/llhhmOhmRIre4mlRmdim4ghcHqG/hHSvcPB0WzVNZfH3/J/QNXR3trDfWVxaXSb7eeNopEyRuVhgjI5HB7VjKNzojKx5L+z2cpruP8Ap3/9qV7BWfoOkWuhaXFp2nh1tYmcxqzbioZy2M+g3YGecdSetaFCVlYG7sKKKKYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK1xZQzsWYMHPUg1k3FrLbn5xlcZLLnArfopp2JcUzmcZpK25dPhaMiNdrdjk1mXVtJbkbzkHuOn0q1K5m4tENMIyadjj2paYhhpG5U0pGKO2KAH+GpkTVbuDDeZKgkHphcA/8AoQrpa5XRFx4kyP8An2k/9Cjrqqze5tHYKKKKQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKl5ZLPlkwsp5yc88dKzLm1ktgpkKkHjIreopp2JcUzmTSVuXdik5LA7JCRluuaoXNhLCuV/ejOBtBz+VWpIhxaObvL24sdd0o2zFftFwsEmFByjMuRz06V31ZGk2Mkd19qkO0FGQIRzyRyfT7v61r1D3NI7BRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k=